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Thermodynamic Properties of Methane 
in the Critical Region 
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An equation of state is presented for the thermodynamic properties of methane 
in the vicinity of the critical point. It incorporates the scaled asymptotic critical 
behavior predicted theoretically and supplements a global analytic equation of 
state for methane recently developed by Setzmann and Wagner. 
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1. INTRODUCTION 

It has been well established from theory and experiment that the thermo- 
dynamic surface of fluids has a singularity near the critical point [ 1 ]. This 
singularity can be characterized in terms of asymptotic scaling laws with 
universal critical exponents and universal scaling functions [2, 3]. The 
asymptotic scaling laws can be extended by including leading confluent 
singularities, known as correction-to-scaling terms, and by revising the 
scaling fields to account for vapor-liquid asymmetry [-2, 4]. 

A major problem has been how to incorporate the singular behavior 
near the critical point into a global thermodynamic surface that remains 
analytic at the critical point [3]. This problem was first addressed by 
Chapela and Rowlinson [5], who tried to represent the equations of state 
for carbon dioxide and methane as a sum of a scaled equation and an 
analytic equation with weights determined by a switching function. 
However, it turns out that a switching function leads to abnormal behavior 
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of thermodynamic properties that involve derivatives of the equation of 
state [6, 7]. Therefore, when Angus et al. [8] developed an equation 
of state for methane under the sponsorship of IUPAC, the attempt to 
combine the global analytic equation of state with a scaled equation of 
state near the critical point was abandoned. As a consequence, in specifying 
the range of validity of the IUPAC equation of state for methane, a region 
around the critical point had to be excluded. 

An attempt to remedy this limitation was made by Kurumov and 
co-workers [9], who represented the thermodynamic properties of 
methane near the critical point in terms of a parametric scaled equation of 
state originally proposed by Balfour et al. [4] and subsequently applied to 
many fluids [2]. To obtain consistency with the global IUPAC formula- 
tion, Kurumov et al. determined the coefficients in their scaled equation of 
state by fitting not exclusively to experimental thermodynamic property 
data but by including also values calculated from the IUPAC formulation. 
Unfortunately, the attempt of Kurumov et al. was only partially successful. 
The problem was that the range of validity of the scaled equation was not 
large enough to accomplish a smooth connection with the global IUPAC 
formulation. As a consequence Kurumov et al. were forced to conclude 
that "there are ranges of densities where neither the scaled fundamental 
equation nor the IUPAC formulation yields a satisfactory representation 
of the thermodynamic surface" [9]. 

In recent years several investigators have tried to develop improved 
equations for the Helmholtz free energy of methane as a function of density 
and temperature [10-12]. Brandani and Prausnitz [10] had earlier shown 
that by adding some simple correction functions to a Helmholtz free energy 
implied by a generalized Redlich-Kwong equation considerable improve- 
ment in the critical region can be achieved. New comprehensive fundamental 
equations for methane have been proposed by Friend et al. [11] and by 
Setzmann and Wagner [12]. The latter two equations are substantial 
improvements over the previous IUPAC formulation. Among the equations 
of state for methane mentioned above the equation of Setzmann and Wagner 
appears to be the most accurate one. In developing this new equation of state 
an extensive set of experimental data was used [13-15] that was not 
available at the time that the earlier IUPAC formulation was constructed. 
Moreover, by using not only the coefficients, but also the powers of 
temperature and density in the equation as adjustable system-dependent 
variables, Setzmann and Wagner were able to extend their global equation 
for methane into the critical region that was excluded in the IUPAC 
formulation. 

This equation of Setzmann and Wagner yields an accurate representa- 
tion of the thermodynamic properties of methane suitable for all practical 
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applications. Nevertheless, the equation of state of Setzmann and Wagner, 
as is also the case with the other global equations, remains analytic at the 
critical point and consequently fails to account for the singular thermo- 
dynamic behavior at the critical point such as a divergent behavior of the 
specific heat [16]. For scientific use we need an equation of state in the 
near-vicinity of the critical point that incorporates the asymptotic critical 
scaling laws. In this paper we present an equation of state for methane near 
the critical point that supplements the global equation of Setzmann and 
Wagner. It is based on a new theoretical equation of state for fluids in the 
critical region that not only includes the scaled behavior asymptotically 
close to the critical point, but also accounts for the crossover to analytic 
behavior away from the critical point [17-19]. The equation presented in 
this paper for methane near the critical point replaces the scaled equation 
of state earlier presented by Kurumov et al. [9]. 

2. H E L M H O L T Z  F R E E - E N E R G Y  D E N S I T Y  
IN THE CRITICAL REGION 

Our formulation is based on a crossover equation for the Helmholtz 
free-energy density, i.e., the Helmholtz free energy A per unit of volume V. 
Specifically, we use the six-term Landau crossover model derived by Chen 
and co-workers [18]. The asymptotic critical behavior of this crossover 
model has been further analyzed by Tang et al. [-19]. The equation of state 
used in this paper corresponds to the version designated by Tang et al. as 
"crossover model II." 

Let T be the temperature, P the pressure, p the density, and # the 
chemical potential. We use the critical temperature To, the critical pressure 
Pc, and the critical density Pc to define dimensionless properties as 

pcTc# T c A 
I '-- ~ ,  /5 =P---- /~ T' .4 = - - - -  (1) 

Pc' Pc Pc VT 

The Helmholtz free-energy density .~ is decomposed as 

= AA +/5/io(~" ) + _~o(~) (2) 

where /2o(I" ) and Ao(l') are analytic background functions such that 
Ao = - 1  at the critical temperature. The term AA in Eq. (2) contains the 
singular behavior and is treated as a function of the variables all" and d~ 
defined as 

A T = T + I ,  d ~ = / 5 - 1  (3) 
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In the classical theory A j  can be expanded around the critical point 
by a Taylor series of the form [ 18 ] 

1 1 1 
A.~l = ~ tMZ + ~ uAM4 + ~ aosM5 

1 1 4 1 
+ ~ ao6 M6 + ~ aa4 tM  + ~ a22 t2M z (4) 

where u, A, a05, 806, 814, and a22 are system-dependent coefficients. The 
temperature-like variable t and the order parameter M are related to the 
physical variables zl~" and At5 in a manner specified below. Unlike the 
three-dimensional Ising model, a fluid is not symmetric in the order 
parameter M [20]. This lack of symmetry is reflected in the presence of a 
term proportional to M 5 in the expansion given by Eq. (4). 

As shown by Chen et al. [18], a renormalized AAr, incorporating the 
effects of critical fluctuations, can be constructed from Eq. (4) by the 
following transformation: 

(i) replace the variable t by t~--q/-1/2, 

(ii) replace the variable M in the even terms by M~l/2ql  1/4 and in 
the odd M 5 term by M~l/2q11/sr fa/s, and 

(iii) add a fluctuation-induced additional contribution - �89 

The new functions in the above transformation are defined as 

y = y(2v-1)/~, ~ = y-,~l~J, ql = y~lA, 

v 
V = Y(~"- ~/2)/~, ~ = ~ ( Y ~/~ - 1 ) 

(5) 

where v, q, ~, A, and A a are universal critical exponents and where t7 is 
defined as 

= u/u* (6) 

with u* being a universal fixed-point coupling constant. For these universal 
quantities we continue to use the values adopted by Chen et al. [18], and 
they are reproduced in Table I. The crossover function Y in Eq. (5) is to be 
determined from [18] 

A2.1/2 
1 -  (1-- tT)Y=~ 1 +---~, Y~/'~ (7) 

/ s  

with 

1 
1r 2 = tJ- + ~ u*~AM2~ql  (8) 
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Table I. Universal Constants 

v = 0.630 

r /=  0.0333 

~ = 2 - 3 v  = 0 . 1 1 0  

A =0 .51  

A~ = 1.323 

u* =0 .472  

After applying the above transformation to the Landau expansion (4), we 
obtain 

1 1 1 1 6 3 3/2 AYtr = ~ tMSJ-~ + ~. u*uAM4~2~ + ~. aosMS~S/2~/~ll + ~ ao6M ~ #1 

1 1 1 2 
-+-~. a14tM4J-~2~lll/2 + 21~. a22tSMS~-2~ 1/2__2 t S (9) 

The variable ~c 2, defined by Eq. (8), serves as a measure of the distance 
from the critical point. As ~c2~0, Y--*0 and one recovers from Eq. (9) 
the asymptotic critical scaling laws [19]. As ~c2~ ~ ,  Y--, 1 and Eq. (9) 
reduces to the classical Landau expansion given by Eq. (4). 

As discussed by Chen etal. [18,21], the singular Helmholtz 
free-energy density AA in Eq. (2) is related to AA r by 

A'7t=AAr--c\OMJ,\ Ot /M (10) 

where the coefficient c is a small system-dependent constant related to a 
lack of vapor-liquid symmetry. The variables t and M in Eq. (9) are related 
to ATand A~ by [18, 21] 

t=c 'AT+C\oMJ, '  M=c~ Ot /M (11) 

where c,, Cp, and dl are additional system-dependent coefficients. Finally, 
to specify the total Helmholtz free-energy density 4, defined by Eq. (2), we 
represent the analytic background functions 4o(T) and/~o(T) by truncated 
Taylor expansions, 

4 

Ao(T)= --1 + 2 As(AT") s (12) 
j = l  

5 

~o(~) = Y~ ~+(~)J  (13) 
j = O  

where Aj and/~s are system-dependent coefficients. 

840/13/4-9 
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The relevant equations needed to calculate the various thermodynamic 
properties from our crossover model for the Helmholtz free-energy density 
are given in a previous publication 1-18]. The computation of the singular 
part A.~ the Helmholtz free-energy density for a given temperature T and 
a given density p, proceeds as follows. 

(i) Calculate zeroth-order estimates for the variables t and M as 
to = c, ,4 ~ and Mo = cp(A~ - dl d 1"), respectively. 

(ii) Calculate the corresponding values Yo = Y(to, Mo) and Xo= 
X(to, Mo) from Eqs. (7) and (8) by iteration. 

(iii) Calculate (0 A.7tr/Ot)M and (0 AYlr/OM), in this approximation 
and obtain new estimates tl and M1 for t and M from Eq. (11). 

(iv) Iterate the procedure until convergence is obtained. 

3. APPLICATION TO METHANE 

In developing our equation of state for methane in the critical region 
we converted all temperatures to the new international temperature scale of 
1990 [22], as was also done by Setzmann and Wagner [12]. The values 
reported in the literature for the critical parameters To, Pc, and Pc of 
methane have been reviewed by Setzmann and Wagner. They accepted as 
the most probable values To= 190.564 K, Po=4.5922 MPa, and pc= 
162.66 kg-m -3, which had been obtained by Kleinrahm and Wagner [13] 
and which had also been retained by Kurumov et al. [9]. For Tc and Pc 
we continued to use the same values as quoted above. However, we found 
that our equation of state yielded a better representation of the experimen- 
tal coexisting vapor and liquid densities near the critical point if the critical 
density was reduced to pc= 162.38 kg .m -3. This small downward shift is 
probably due to the presence of the asymptotic singular curvature of the 
coexistence diameter implied by scaled equations of state [16, 18, 23] and 
which is not present in analytic equations like the one used by Setzmann 
and Wagner. 

In addition to the critical parameters, or crossover model for the 
Helmholtz free-energy density contains the following system-dependent 
constants: the crossover constants ~ and A, the coefficients ct, cp, c, and dl 
in the relations given by Eq. (11) between the theoretical and the physical 
variables, the coefficients a u of the classical Landau expansion given by 
Eq. (4), the coefficients -~j in the background contribution to the pressure, 
and the coefficients /~j in the background contribution to the caloric 
properties. Except for the caloric background coefficients /~j, these con- 
stants can be determined from a fit of our crossover model to experimental 
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P-p-T data [-18]. For methane we used the experimental P-p-T data 
obtained by Wagner and co-workers in the one-phase region [-14, 15] as 
well as along the vapor-liquid phase boundary [13]. With ae=0.007%, 
cry=0.001 K, and ap =0.02% as the estimated errors in pressure, tem- 
perature, and density for the experimental P-p-T data and with the uncer- 
tainties as estimated by Kleinrahm and Wagner [13] for the coexistence 
properties, our crossover equation of state, with the system-dependent 
coefficients listed in Table II, reproduces these experimental data with a 
reduced chi-square of 0.53 in a range of densities and temperatures around 
the critical point bounded by 

Z -\OAI52j,~ ~ <1.4 and T~>186K (14) 

Table IL System-Dependent Constants for Methane 

Critical-point parameters 
Tc 190.564 K (ITS-90) 
Pc 4.5992 MPa 
Pc 162.38 kg. m-3 

Crossover parameters 
0.25376 

A 1.2873 
Scaling-field parameters 

c t 1.2798 
c o 2.6165 
c -0.043264 
dl -0.41063 

Classical parameters 
ao5 0.052257 
a06 0.83670 
a14 0.59968 
a22 1.0879 

Equation-of-state background parameters 
"r -4.9838 
A2 3.2997 
A3 1.2843 
4 4 3.2983 

Caloric background parameters 
/~o 7.291 
171 7.188 
/~2 -- 10.261 
kL3 --4.8579 
~4 3.5384 
~5 -43.171 
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Fig. 1. Percentage deviations of the experimental 
pressures [13-15] from the crossover equation of state. 
O, T=  186.012 K; O, T =  189.012 K; V, T =  190.512 K; 
+, T=190.567K; D, T=193.012K; *, T=196.011K; 
A, T=200.011 K; O, T =  207.010 K. 
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Fig. 2. Coexisting vapor and liquid densities as a 
function of temperature. The solid curve represents 
the coexistence curve calculated from the crossover 
equation of state. The data points represent 
experimental values reported by Kleinrahm and 
Wagner [13]. 
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The deviations of the experimental pressure data from our equation in 
this range are shown in Fig. 1. Our crossover equation is based on a 
theoretical match-point solution, which is exact for M = 0 ,  but which 
becomes less accurate for M # 0, i.e., for densities smaller or larger than the 
critical density [19, 21]. From Fig. 1 we note that our crossover equation 
does slightly better at the low-density side than at the high-density side. 
A comparison between the coexistence boundary as implied by our cross- 
over equation of state and the experimental saturated densities is presented 
in Fig. 2; the corresponding deviations are within the experimental 
uncertainty. A comparison between the vapor pressures calculated from 
our crossover equation of state and the experimental vapor pressures is 
presented in Fig. 3; the deviations are smaller than 0.01%. 
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Fig. 3. (a) The vapor pressures as a function of 
temperature. The solid curve represents the vapor 
pressures calculated from the crossover equation 
of state. The data points represent experimental 
values reported by Kleinrahm and Wagner [13].  
(b) Percentage deviations of the experimental vapor 
pressures. 
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Fig. 4. Sound velocity at selected temperatures as a 
function of pressure. The curves represent the values 
calculated from the crossover model. The data points 
represent experimental data reported by G a m m o n  and 
Douslin [24] and Sivaraman and G a m m o n  [25]. 
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Table lII. Table for Checking Computer Programs 

681 

Temperature Density Pressure Cv c e Speed of sound Phase 
(K) (kg.m 3) (MPa) (kJ-kg 1.K 1) (kJ-kg 1-K-1) (m-s -1) region 

187.00 120.00 4.114 8.370 II 
189.00 120.00 4.380 9.360 II 
191.00 120.00 4.618 2.650 50.86 245.5 I 
193.00 120.00 4.830 2.471 30.62 255.1 I 
187.00 160.00 4.114 7.018 II 
189.00 160.00 4.380 7.760 II 
191.00 160.00 4.662 3.394 595.0 213.1 I 
193.00 160.00 4.949 2.664 81.14 246.3 I 
187.00 200.00 4.114 6.206 II 
189.00 200.00 4.380 6.799 II 
191.00 200.00 4.703 2.516 52.46 265.1 I 
193.00 200.00 5.085 2.343 29.27 289.1 I 

The caloric background coefficients ~j for j >~ 2 were determined from 
the experimental sound-velocity data reported by G a m m o n  and Douslin 
[-24] and Sivaraman and G a m m o n  [25] and the specific-heat data of 
Younglove [26] as corrected by Roder [27]. In Fig. 4, we show the sound 
velocity as a function of pressure at a number of temperatures; the good 
agreement between experimental and calculated sound velocities is evident. 
We should mention that we did not include in this comparison sound- 
velocity data near the phase boundary, since they seem to be appreciably 
less accurate than those in the one-phase region away from the phase 
boundary [9, 24, 25]. The deviations of the experimental C v  data from our 
equation are shown in Fig. 5. Our  crossover equation for the Helmholtz 
free-energy density reproduces the sound-velocity and specific-heat data 
with a standard deviation of 0.8 %. 

The coefficients /~0 and /~1 determine the zero points of entropy and 
energy. These coefficients were fixed by matching our equation with the 
global equation of Setzmann and Wagner at a reference point selected at 
T = 220 K and p = 160 kg .  m - 3. Values calculated for the pressure, specific 
heats, and sound velocity at a few selected temperatures and densities as an 
aide for checking computer  programs are presented in Table III.  

4. C O M P A R I S O N  W I T H  T H E  E Q U A T I O N  OF 
S E T Z M A N N  AND W A G N E R  

Our crossover equation for the Helmholtz free-energy density yields a 
representation of the thermodynamic properties of methane equivalent to 
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or better than the analytic equation of Setzmann and Wagner [-12] in an 
approximately triangular region in the temperature~tensity plane bounded 
by the lines 

T =  186.2 

T =  +0.417p + 266.52 (15) 

T =  -0.457p + 282.37 

where T is in K and p is in kg. m-3. This region is shown in Fig. 6 and 
can be subdivided into two regions, I and II, also shown in Fig. 6. In 
region I the sound velocities, isochoric specific heats, and isobaric specific 
heats calculated from our crossover equation and from the equation of 
Setzmann and Wagner differ by less than 1%. Hence, in this region 
one can switch from our crossover equation to the analytic equation of 
Setzmann and Wagner without significant jumps in any of the ther- 
modynamic properties. 

In region II the differences between our nonanalytic equation and the 
analytical equation become significant. While the equation of Setzmann 
and Wagner does represent the actual experimental specific-heat data for 
methane, it implies a finite Cv of about 3.6• 103kJ .kg  - 1 . K  -1 at the 

230 , , , , 
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220  CH4 / ' ,  

_/ A 

210 / 
/ ,, 

2 t x o o -  

o 
~ 190 

180" . . . . . .  
100 1 5 0  200 250 

D e n s i t y ,  k g  �9 m -3 

Fig. 6. Recommended range for the crossover 
model. In region I the calculated sound velocity, 
isochoric specific heat, and isobaric specific heat 
agree with the analytic equation of Setzmann and 
Wagner within 1%. In region II the nonanalytic 
and analytic equation yield different results. The 
solid curve represents the two-phase boundary. 
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Fig. 7. The sound velocity as a function of density 
at T= 190.572 K. The solid curve represents the 
crossover model, the dashed curve the analytic 
equation of Setzmann and Wagner [12] and the 
dotted curve the analytic equation of Friend et al. 
[11]. The data points represent experimental data 
reported by Gammon and Douslin [24]. 

critical point, while the critical scaling laws imply a divergent Cv. The 
experimental sound-velocity data are sufficiently close to the critical point 
so that the difference between our nonanalytic equation and the global 
analytic equation becomes visible as shown in Fig. 7. In this figure we also 
show the sound velocity calculated from the global analytic equation of 
Friend et al. [ 11 ]. The scaling laws imply that the sound velocity vanishes 
at the critical point, while the analytic equations fail to follow the rapid 
decrease of the sound velocity in the near vicinity of the critical point. 
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